This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713926090

Phasmid and biforked mesogens with thiobenzoate end groups

H. T. Nguyena ${ }^{\text {a }}$ C. Destrade ${ }^{\text {a } ; ~ H . ~ A l l o u c h i b ; ~ J . ~ P . ~ B i d e a u b ; ~ M . ~ C o t r a i t ~}{ }^{\text {b }}$; D. Guillon ${ }^{\text {c }}$; P. Weber ${ }^{\text {c } ; ~ J . ~ M a l t h e ̌ t e ~}{ }^{\text {d }}$ ${ }^{\text {a }}$ Centre de Recherche Paul Pascal, Avenue A. Schweitzer, Pessac Cedex, France ${ }^{\text {b }}$ Laboratoire de Crystallographie, URA144 du CNRS, Université de Bordeaux 1, Talence Cedex, France ${ }^{\text {c }}$ IPCMSGROUPE des Matériaux Organiques, Strasbourg Cedex, France ${ }^{d}$ Laboratoire de Physique des Solides, Orsay Cedex, France

To cite this Article Nguyen, H. T. , Destrade, C. , Allouchi, H. , Bideau, J. P., Cotrait, M. , Guillon, D. , Weber, P. and Malthěte, J.(1993) 'Phasmid and biforked mesogens with thiobenzoate end groups', Liquid Crystals, 15: 4, 435-449 To link to this Article: DOI: 10.1080/02678299308036465
URL: http://dx.doi.org/10.1080/02678299308036465

PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phasmid and biforked mesogens with thiobenzoate end groups

by H. T. NGUYEN*, C. DESTRADE
Centre de Recherche Paul Pascal, Avenue A. Schweitzer, 33600 Pessac Cedex, France
H. ALLOUCHI, J. P. BIDEAU, M. COTRAIT
Laboratoire de Crystallographie, URA144 du CNRS, Université de Bordeaux 1, 33405 Talence Cedex, France
D. GUILLON, P. WEBER
IPCMS-GROUPE des Matériaux Organiques, 6 rue Boussingault, 67083 Strasbourg Cedex, France
and J. MALTHÊTE
Laboratoire de Physique des Solides, Bâtiment 510, 91405 Orsay Cedex, France

(Received 10 December 1992; accepted 2 May 1993)

Abstract

One phasmid and fourteen biforked mesogens with thiobenzoate end groups have been synthesized and studied. The phasmid displays a hexagonal columnar phase with a lattice parameter $a=45 \cdot 5 \AA$ at $70^{\circ} \mathrm{C}$. This phase is not observed for the biforked mesogens which exhibit only a nematic phase, a smectic C phase for short chains and an unknown phase for long chains. The tilt angle of the molecules in the smectic C phase is about 50° (the layer thickness is $38 \cdot 2 \AA$ for a molecular length $l=61 \AA$ in the case of IA $(n=12)$. The crystal structure of compound IB $(n=12)$ is monoclinic and the molecules adopt a zigzag form.

1. Introduction

Polycatenar mesogens constitute a new class of materials, the molecules of which are formed by a long central aromatic core with several terminal aliphatic chains. Phasmids (three aliphatic end chains) [1] and biforked mesogens (two aliphatic end chains) $[2,3]$ have been synthesized and characterized through structural studies [415] for a better understanding of the relation between molecular structure and the mesomorphic behaviour. In order to study the influence of the thioester linkage-COSin comparison with the previously used carboxylate ester group, new series of polycantear mesogens has been considered; their general chemical formulae are:

where
 (B)
$X=\mathrm{H} ; R \mathrm{O}, R=\mathrm{C}_{n} \mathrm{H}_{2 n+1}$

2. Synthesis

The compounds of this series were prepared following the scheme:

(a) $\mathrm{KOH}, \mathrm{EtOH}, \mathrm{RBr}, \mathrm{HCl}$,
(b) $\mathrm{SOCl}_{2}, 4-\mathrm{HS}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}, \mathrm{Et}_{3} \mathrm{~N}$
(c) $\mathrm{HOOC} A \mathrm{COOH}, \mathrm{DCC}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

3. Results and discussion

All the compounds prepared are mesomorphic.

3.1. Phasmid or hexacatenar mesogen

Compounds with three chains at each end have enough aliphatic chains to fill the space around the rigid part of the molecules and generally display columnar phases $[1,6,15]$. For this reason we have prepared only one compound with the formula

C $59 \phi_{\mathrm{h}} 82 \mathrm{I}$
In fact, it exhibits the hexagonal columnar mesophase between $59^{\circ} \mathrm{C}$ and $82^{\circ} \mathrm{C}$. This less birefringent mesophase has a fan-shaped texture with a wide homeotropic domain. So, it is uniaxial (see figure 1). Its structure was confirmed by X-ray diffraction measurements performed as a function of temperature using a Guinier focusing camera. This was equipped with a bent quartz monochromator (copper $\mathrm{K}_{\alpha 1}$ radiation from a Philips PW-1009 generator) and a heated sample holder; it was operated under vacuum. The powder patterns of the liquid crystal compound in Lindemann capillaries were recorded photographically.

The X-ray patterns registered contained three sharp Bragg reflections in the small angle region and a diffuse ring at $4.6 \AA$ in the wide angle region. The reciprocal spacings of the sharp reflections were in the ratio $1: \sqrt{ } 3: \sqrt{4}$, indicative of a two dimensional hexagonal lattice. They are in perfect agreement with a conventional columnar structure as suggested by the optical textures observed with a polarizing microscope. The intercolumnar distance deduced is $45.5 \AA$ and does not vary as a function of temperature over the whole stability range of the columnar mesophase. The diffuse ring at $4.6 \AA$ corresponds both to the aliphatic chains and to the rod-like cores of the molecules in the disordered state.

With the assumption of a classical columnar structure for the mesophase of this compound, one can easily calculate the average number n of molecules per unit length of a column, as has already been done for another phasmidic liquid crystal [4]

$$
n=(\sqrt{ } 3 / 2) D^{2}\left(N_{\mathrm{A}} / M v\right)
$$

where D is the distance between the axes of two neighbouring columns, N_{A} is Avogadro's number, M the molecular weight and v the specific volume. When taking for v an approximate value of $1.05 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$, a value comparable to the one measured for a similar phasmidic compound [4], one finds $n=0.606 \AA^{-1}$, which corresponds to 2.8 molecules per $4.6 \AA$ separation along the axis of the column. Since v is only an approximate value and not a value deduced directly from the experiment, one can consider that the value of n is about 3 .

Therefore, the molecular arrangement in the columnar mesophase in this compound is similar to that described in [4]. It involves groups of three molecules with the aromatic cores parallel to one another and surrounded by the disordered paraffinic chains. Disc-like in shape, these groups are stacked one over one another, as in a conventional columnar mesophase, with an average approach distance of $4 \cdot 6 \AA$. The columns are then assembled in a two dimensional hexagonal lattice.

3.2. Biforked mesogens

The transition temperatures and types of mesophases for compounds $\mathbf{I}, X=\mathrm{H}$ are given in table 1 A

$$
\text { (for }-A-\mathrm{C}_{6} \mathrm{H}_{4} \text {) and table } 1 \mathrm{~B}\left(\text { for }-A>=\text { trans }-\mathrm{C}_{6} \mathrm{H}_{10}-\right.\text {). }
$$

These compounds with short chains ($n=8$ to 10 or 11) display nematic (N) and smectic C phases. When the chains are long enough, one only obtains the S_{C} phase. The nematic phase has typical threaded or marbled textures (see figure 2) and the S_{C} phase has broken fan-shaped or schlieren textures (see figure 3). The most interesting compound is the tetradecyloxy derivative of the central benzene ring series. It displays on cooling from the S_{C} phase, another and unknown mesophase and has the phase sequence

$$
\text { C } 142 S_{?} 168 S_{\mathrm{C}} 172 \mathrm{I} .
$$

Table 1A. Transition temperatures (${ }^{\circ} \mathrm{C}$) of compounds IA.

n		C	$\mathrm{S}_{?}$		$\mathrm{~S}_{\mathrm{C}}$		N	I
8	\bullet	150	-		\bullet	186	\bullet	208
9	\bullet	149	-	\bullet	186	\bullet	199	\bullet
10	\bullet	146	-		\bullet	181	\bullet	192
11	\bullet	146	-		\bullet	180	\bullet	185
12	\bullet	144	-		\bullet	177	-	
13	\bullet	145	-	\bullet	\bullet	175	-	
14	\bullet	142	\bullet	168	\bullet	172	-	

- phase present; -, phase absent.

Figure 1. Optical textures of the Φ h phase of the plasmid $\left(\mathbf{I}, X=\mathrm{OC}_{12} \mathrm{H}_{25} ;\right.$ central ring $\left.=\mathrm{C}_{6} \mathrm{H}_{4}\right)$ at $75^{\circ} \mathrm{C}$.

Figure 2. Optical textures of the N phase of compound IA $(n=10)$ at $185^{\circ} \mathrm{C}$.

Figure 3. Optical textures of the S_{c} phase of compound IA $(n=10)$ at $160^{\circ} \mathrm{C}$.

Figure 4. Optical textures of the $S_{?}$ phase of compound IA $(n=14)$ at $160^{\circ} \mathrm{C}$.

Table 1B. Transition temperatures (${ }^{\circ} \mathrm{C}$) of compounds IB.

n		C		S_{c}		N	I
8	\bullet	125	\bullet	170	\bullet	183	-
9	-	124	\bullet	169	\bullet	180	-
10	-	122	-	165	-	172	\bullet
11	-	124	-	163	-		\bullet
12	-	122	\bullet	161	-		\bullet
13	\bullet	122	\bullet	159	-		-
14	-	120	\bullet	156	-		-

-, phase present; 一, phase absent.

This is the first time one has been able to observe in polycatenar mesogens the occurrence of a mesophase at lower temperatures than the S_{C} phase (see figure 4). The structural assignment of this phase is in progress.

The compounds with the flexible central cyclohexyl ring display the same mesomorphic properties, but their melting and clearing temperatures are around $20^{\circ} \mathrm{C}$ lower than those of the central benzene ring compounds.

The smectic C structure of compounds IA ($n=10$ and 12) was characterized by Xray measurements. The X-ray patterns contain one sharp Bragg reflection in the small angle region and a diffuse ring at $4.65 \AA$ in the wide angle region; they are characteristic of the diffraction of a disordered smectic phase. The layer thicknesses are $36.75 \AA$ and $38 \cdot 2 \AA$ for $n=10$ and 12 , respectively. In its most extended conformation, the $n=12$ compound has a molecular length of about $61 \AA$; the tilt angle of the molecules in the smectic C phase can be estimated to be about 50°. The large value of this angle is probably due to the bulkiness of the paraffinic moiety (two long aliphatic chains attached on each end of the aromatic core), as mentioned previously in another study of biforked mesogens [2].

3.3. Comparison between the benzoates and thiobenzoates

The biforked mesogens with two benzoate end groups have been reported and they show a competition between lamellar and columnar mesophases dependent upon the chain length. So we can compare the mesomorphic properties of these mesogens with those of the thiobenzoate series. Let us point out some interesting features:

- The main difference between the benzoate and thiobenzoate derivatives is the existence of the columnar phases in the long chain benzoates [12] ($n=12-14$). On the other hand, the thiobenzoate with a very long chain ($n=14$) exhibits an unknown phase (probably a lamellar phase) on cooling from the S_{C} phase.
- The clarification temperatures of the thiobenzoates are higher than those of the benzoates, but the melting points are the same. The thiobenzoates therefore have wider mesomorphic temperature ranges.

The difference between the physical properties of these materials may be due to resonance effects or steric hindrance. As a matter of fact, the bond length $X-\mathrm{C} \mathrm{Ar}$ is longer with S but the angle $\mathrm{C}(=\mathrm{O})-X-\mathrm{C}$ Ar is lower with S . These values in table 2 [16] explain:

- The existence of an interaction between the two H in the ortho-positions of the two benzene rings in the bent conformation. This favours the planar transarrangement and the lengthening of the molecules:

- The increase in resonance in these thiobenzoates in which the transconformation is more stable and again, lengthening of the molecules is favoured. On the other hand, the larger dipole moment observed for the thiobenzoates than that for the benzoates, would favour formation of smectic phases [17].

Table 2. Physical data for O and S molecular units.

	Molecular unit or atom	O	S
Angle	$\mathrm{C}-X-C_{\mathrm{Ar}}$	110°	104°
Bond	$X-C_{\mathrm{Ar}}$	$1 \cdot 43 \AA$	$1.81 \AA$
Electronegativity	X	3.5	$2 \cdot 5$
IR	$\mathrm{COX}-\mathrm{Ar}$	$1730 \mathrm{~cm}^{-1}$	$1670 \mathrm{~cm}^{-1}$

4. Crystal structure analysis

4.1. Experimental

The compound studied is IB ($n=12$), whose molecular formula is $\mathrm{C}_{82} \mathrm{H}_{124} \mathrm{O}_{10} \mathrm{~S}_{2}$ ($M_{\mathrm{w}}=1334.0 \mathrm{~g} \mathrm{~cm}^{-3}$). It crystallizes from toluene solution: monoclinic system, space group $P_{21} / c(Z=2)$; therefore the molecule lies on a centre of symmetry; the asymmetric unit corresponds to half the molecule. The crystal dimensions are 0.4×0.225 $\times 0.15 \mathrm{~mm}$. The unit cell parameters were precisely determined from a least-squares fit of the setting angles for 25 centred reflections with $15<\theta<26^{\circ}: a=50.674$ (7), $b=9.943$ (1), $c=8.254$ (1) and $\beta=92.83$ (1) $)^{\circ}$. The data were collected on an Enraf-Nonius CAD-4 four-circle diffractometer, equipped with a graphite monochromator with $\sin \theta / \lambda<0.50$ and an $\omega-2 \theta$ scan mode. The radiation used was $\mathrm{CuK}_{\alpha}(\lambda=1 \cdot 54018 \AA)$. Reflections with
$\theta<25^{\circ}$ have been measured twice and averaged. An empirical absorption correction was applied: the transmission factors were between 0.94 and 0.98 .4062 independent reflections were measured, out of which 2782 are observed ($I<3 \sigma(I)$). The structure was solved by direct methods using a Mithril package [18] and refined by least-squares refinement of $\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2}$ with $w=1 / \sigma(F)^{2}$. All non-hydrogen atoms were refined with anisotropic thermal factors. Because of the high thermal motion of most non-hydrogen atoms, hydrogen atoms were placed in their theoretical position [19]. The refinement was then resumed. Diffusion factors for non-hydrogen atoms [20] and for hydrogens [21] were used.

The final reliability factors were $R=0.076$ and $w R=0.085 ; s=2.85$; residual electronic density between -0.4 and $0.3 \mathrm{e} \AA^{-3} ;(\Delta / \sigma)_{\max }=0.3$.

4.2. Results

Because the molecule lies on a centre of symmetry ($P_{2_{1} / c} /$ with $Z=2$), the asymmetric unit corresponds to half the molecule. The labelling of the atoms is shown in figure 5.

Atomic parameters are given in table 3; the projection of the structure along the b axis is shown in figure 6 . Bond lengths and bond angles, and their standard deviations are given in tables 4 and 5 . They are in good agreement with those usually observed for similar compounds [13,22]. Nevertheless, the bond lengths and angles relating to the ends of both alkyl chains are affected by large uncertainties resulting from the large thermal scattering factors of the corresponding atoms.

As expected, the polyaromatic central core atoms involve significantly smaller thermal motions than those of the alkyloxy chains: $O(31)$ to $C(43)$ and $O(51)$ to $C(63)$, respectively, especially for the octyl terminal groups, as can be seen from the Ortep drawing [23] in figure 7. The molecule adopts a zigzag form, as observed in

Figure 5. Labelling of atoms.

Table 3. Atomic coordinates and Beq $\left(\AA^{2}\right)=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} a_{i} \cdot a_{j}$ for IB $(n=12)$.

	X	Y	Z	$B \mathrm{eq} / \AA^{2}$
C(1)	0.4901(2)	$0.0023(8)$	0.1638(9)	2-8(4)
C(2)	0.4736(2)	0.0628(9)	0.0212(9)	3.4(4)
C(3)	0.5073(2)	$-0.1196(9)$	0.1116(9)	$3 \cdot 6(4)$
C(4)	$0 \cdot 4710(1)$	-0.0534(9)	0.2860(9)	$2 \cdot 8(4)$
$\mathrm{O}(5)$	0.4649(1)	-0.1725(6)	0.3088(7)	4.4(3)
O(6)	$0.4615(1)$	$0.0582(6)$	0.3711(6)	3.7(3)
C(7)	$0 \cdot 4410(2)$	0.0393(9)	0.4811(9)	3.3(4)
C(8)	$0 \cdot 4418$ (2)	-0.0703(9)	$0.5925(10)$	3.7(5)
C(9)	$0.4218(2)$	-0.0761(9)	$0.7045(9)$	3.3(4)
$\mathrm{C}(10)$	0.4036(1)	0.0302(9)	0.7075(9)	2.4(4)
C(11)	0.4040(2)	$0 \cdot 1415(9)$	$0.5953(9)$	3.5(4)
C(12)	0.4223(2)	0.1452(8)	$0 \cdot 4800(10)$	3.4(4)
S(13)	0.3758(1)	0.0279(3)	$0 \cdot 8334(2)$	3.5(1)
C(14)	0.3897(2)	-0.0195(9)	1.0298(9)	$3 \cdot 4(4)$
O(15)	0.4125(1)	-0.0485(9)	1.0575(7)	6.0(4)
C(16)	0.3694(1)	-0.0247(9)	1-1576(9)	$2.9(4)$
C(17)	0.3749(2)	-0.1044(9)	1-2956(9)	3.0(4)
$\mathrm{C}(18)$	$0 \cdot 3566(2)$	-0.1161(9)	$1.4110(9)$	3.3(4)
C(19)	0.3324(1)	-0.0476(9)	1-3921(9)	3.0(4)
C(20)	0.3272(2)	0.0385 (10)	$1 \cdot 2572(9)$	3.3(4)
C(21)	$0 \cdot 3455(2)$	$0 \cdot 0491(9)$	$1 \cdot 1386(9)$	$3 \cdot 5(4)$
O(31)	0.3131(1)	-0.0509(6)	1.5016(6)	$3 \cdot 9(3)$
C(32)	0.3149(2)	-0.1592(10)	1.6273(9)	3-9(5)
C(33)	0.2896(2)	-0.1442(11)	$1.7177(10)$	$4 \cdot 6(5)$
C(34)	$0 \cdot 2653(2)$	-0.1692(11)	$1 \cdot 6144(11)$	4-7(5)
C(35)	0.2392(2)	-0.1422(13)	$1.6990(11)$	6.0(6)
C(36)	$0 \cdot 2148(2)$	-0.1555(13)	$1 \cdot 5980(12)$	6.0(6)
C(37)	0.1893(2)	-0.1249(14)	1.6806(13)	$6.8(7)$
C(38)	0.1642(2)	-0.1399(15)	$1.5785(14)$	8-0(8)
C(39)	0.1388(2)	$-0.1177(15)$	$1 \cdot 6590(16)$	8.7(8)
C(40)	$0 \cdot 1137(2)$	-0.1364(18)	$1.5589(16)$	$9 \cdot 8(9)$
$\mathrm{C}(41)$	$0.0896(2)$	-0.1109(18)	$1.6372(18)$	$10 \cdot 5(10)$
$\mathrm{C}(42)$	$0.0654(2)$	-0.1351(26)	$1 \cdot 5412(22)$	15.5(14)
C(43)	$0.0400(3)$	-0.1098(29)	$1.6138(26)$	$18.0(17)$
O(51)	0-3033(1)	$0 \cdot 1050(7)$	$1 \cdot 2516(6)$	4.3(3)
C(52)	0.2971.(2)	$0.1894(11)$	$1 \cdot 1110(10)$	$4 \cdot 6(5)$
C(53)	$0 \cdot 2691(2)$	$0.2472(12)$	$1 \cdot 1316(11)$	$5 \cdot 4(6)$
C(54)	$0.2477(2)$	$0 \cdot 1379(12)$	1-1301(12)	$5 \cdot 5(6)$
C(55)	$0 \cdot 2209(2)$	$0 \cdot 2037(14)$	1.1489(12)	$6.7(7)$
C(56)	$0 \cdot 1974(2)$	$0 \cdot 1097(15)$	$1.1368(14)$	8-1(8)
C(57)	$0 \cdot 1707(2)$	$0 \cdot 1788(18)$	1-1504(16)	9.7(9)
C(58)	$0.1459(3)$	$0.0889(18)$	1-1294(17)	$10.5(10)$
C(59)	0.1200(2)	$0 \cdot 1666(18)$	$1 \cdot 1382(18)$	$10 \cdot 7(10)$
$\mathrm{C}(60)$	$0.0962(2)$	$0.0905(21)$	$1 \cdot 1060(20)$	$12 \cdot 7(12)$
C(61)	$0.0717(2)$	$0 \cdot 1609(20)$	$1 \cdot 1247(22)$	$12 \cdot 7(12)$
$C(62)$	0.0474(3)	$0 \cdot 0815(30)$	$1.0932(26)$	$18.7(18)$
C(63)	$0.0229(4)$	0.1487(32)	$1 \cdot 1153(35)$	22.9(23)

similar compounds. The significant torsion angles of the polyaromatic central core are as follows:

$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{O}(5)$	$-18 \cdot 4(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{O}(6)$	$-78 \cdot 3(6)$
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{O}(6)-\mathrm{C}(7)$	$-7 \cdot 5(7)$
$\mathrm{C}(4)-\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$46 \cdot 67(7)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{S}(13)-\mathrm{C}(14)$	$48 \cdot 3(6)$
$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{C}(17)$	$157 \cdot 9(6)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(31)-\mathrm{C}(32)$	$-15 \cdot 6(7)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{O}(51)-\mathrm{C}(52)$	$0 \cdot 6(7)$
$\mathrm{C}(19)-\mathrm{O}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$-174 \cdot 7(7)$
$\mathrm{C}(20)-\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$178 \cdot 2(7)$
$\mathrm{O}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$61 \cdot 4(7)$
$\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$-65 \cdot 6(8)$

Both alkyloxy chains are extended with $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles lying apart at 180°, within less than 10°.

The two chains are labelled as follows: chain 1 corresponds to atoms $\mathrm{C}(32)$ to $\mathrm{C}(43)$, chain 2 corresponds to atoms $C(52)$ to $C(63)$.

The $\mathrm{O} \mathrm{C}-\mathrm{C}$ C angle, at the beginning of each alkyloxy chain, differs from $180^{\circ}: 61^{\circ},-66^{\circ}$ for chains 1 and 2 . The lengths of aliphatic chains 1 and 2 are about the same: 13.93 and $13.90 \AA$, respectively. The salient feature is that the mean planes of

Table 4. Bond lengths in \AA and standard deviations in parentheses; the C_{3}^{\prime} atom is the analogue ($1-x,-y,-z$) of the $\mathbf{C}(3)$ atom through the centre of symmetry. Compound $\mathbf{I B}(n=12)$.

Bond	Length/ \AA	Bond	Length/ \AA
C(1) C(2)	1.52(1)	$O(31) \mathrm{C}(32)$	$1 \cdot 46(1)$
$\mathrm{C}(1) \mathrm{C}(3)$	1.52(1)	$\mathrm{C}(32)-\mathrm{C}(33)$	1-52(1)
$\mathrm{C}(1) \mathrm{C}(4)$	1.53(1)	$\mathrm{C}(33)-\mathrm{C}(34)$	1-48(1)
$\mathrm{C}(4) \mathrm{O}(5)$	1-19(1)	$\mathrm{C}(34) \mathrm{C}(35)$	1.55(1)
$\mathrm{C}(4)-\mathrm{O}(6)$	1-37(1)	$\mathrm{C}(35)-\mathrm{C}(36)$	$1 \cdot 46(2)$
$\mathrm{O}(6)-\mathrm{C}(7)$	1.42(1)	$\mathrm{C}(36)-\mathrm{C}(37)$	1.52(2)
$\mathrm{C}(7) \mathrm{C}(8)$	1-39(1)	$\mathrm{C}(37)-\mathrm{C}(38)$	1-50(2)
$\mathrm{C}(7)-\mathrm{C}(12)$	1.38(1)	$\mathrm{C}(38)-\mathrm{C}(39)$	1.49(2)
$\mathrm{C}(8) \mathrm{C}(9)$	1.40(1)	$\mathrm{C}(39) \mathrm{C}(40)$	1-49(2)
$\mathrm{C}(9) \mathrm{C}(10)$	1-36(1)	$\mathrm{C}(40)-\mathrm{C}(41)$	$1 \cdot 43(2)$
$\mathrm{C}(10) \mathrm{C}(11)$	$1 \cdot 40$ (1)	$\mathrm{C}(41)-\mathrm{C}(42)$	1-44(2)
$\mathrm{C}(10) \mathrm{S}(13)$	$1.792(8)$	$\mathrm{C}(42)-\mathrm{C}(43)$	1.47(3)
C(11) C(12)	1.36(1)	$\mathrm{O}(51-\mathrm{C}(52)$	$1 \cdot 43$ (1)
$\mathrm{S}(13)-\mathrm{C}(14)$	1.793(9)	$\mathrm{C}(52)-\mathrm{C}(53)$	1-54(1)
$\mathrm{C}(14) \mathrm{O}(15)$	1-20(1)	C(53)-C(54)	1.50(1)
$\mathrm{C}(14)-\mathrm{C}(16)$	1.51(1)	$\mathrm{C}(54)-\mathrm{C}(55)$	1.51(2)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.38(1)	$\mathrm{C}(55)-\mathrm{C}(56)$	1.49(2)
$\mathrm{C}(16)-\mathrm{C}(21)$	$1 \cdot 40$ (1)	$\mathrm{C}(56)-\mathrm{C}(57)$	1-51(2)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.37(1)	$\mathrm{C}(57) \mathrm{C}(58)$	1.52(2)
$\mathrm{C}(18)-\mathrm{C}(19)$	1-39(1)	$\mathrm{C}(58)-\mathrm{C}(59)$	1-51(2)
C(19)-C(20)	1.40(1)	$\mathrm{C}(59)-\mathrm{C}(60)$	1.42(2)
$\mathrm{C}(19) \mathrm{O}(31)$	1.36(1)	C(60)-C(61)	1.42(2)
$\mathrm{C}(20) \mathrm{C}(21)$	$1 \cdot 38(1)$	C(61)-C(62)	$1.45(3)$
$\mathrm{C}(20) \mathrm{O}(51)$	$1.36(1)$	$\mathrm{C}(62) \mathrm{C}(63)$	$1 \cdot 41(4)$
$C(2)-C^{\prime}(3)$	1.59(1)		

Table 5. Bond angles in $\left({ }^{\circ}\right)$ and standard deviations in parenthesis; the $\mathrm{C}^{\prime}(2)$ and $\mathrm{C}^{\prime}(3)$ atoms are the analogues $(1-x,-y,-z)$ of the $\mathrm{C}(2)$ and $\mathrm{C}^{\prime}(3)$ atoms through the centre of symmetry; for IB ($n=12$).

Bonds	Angle/ ${ }^{\circ}$	Bonds	Angle/ $/^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$111 \cdot 5(7)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119 \cdot 8(8)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	$107 \cdot 4(6)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{O}(51)$	$115 \cdot 4(7)$
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(4)$	$108 \cdot 5(6)$	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{O}(51)$	$124 \cdot 8(7)$
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{O}(5)$	$127 \cdot 7(7)$	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	$119 \cdot 5(8)$
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{O}(6)$	$108 \cdot 9(6)$	$\mathrm{C}(19)-\mathrm{O}(31)-\mathrm{C}(32)$	$117 \cdot 8(6)$
$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{O}(6)$	$123 \cdot 4(7)$	$\mathrm{O}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$105 \cdot 1(7)$
$\mathrm{C}(4)-\mathrm{O}(6)-\mathrm{C}(7)$	$121 \cdot 1(6)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$113 \cdot 3(8)$
$\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$121 \cdot 3(7)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$114 \cdot 5(8)$
$\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$115 \cdot 3(7)$	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$116 \cdot 4(9)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$123 \cdot 0(8)$	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$116 \cdot 2(9)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$117 \cdot 9(8)$	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	$117(1)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119 \cdot 6(7)$	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$118(1)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120 \cdot 6(7)$	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$118(1)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{S}(13)$	$123 \cdot 6(6)$	$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(41)$	$117(1)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{S}(13)$	$115 \cdot 4(6)$	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	$117(1)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120 \cdot 9(8)$	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	$119(2)$
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$117 \cdot 9(8)$	$\mathrm{C}(20)-\mathrm{O}(51)-\mathrm{C}(52)$	$116 \cdot 2(6)$
$\mathrm{C}(10)-\mathrm{S}(13)-\mathrm{C}(14)$	$104 \cdot 0(4)$	$\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$105 \cdot 9(7)$
$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{O}(15)$	$124 \cdot 2(7)$	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$115 \cdot 2(8)$
$\mathrm{S}(13)-\mathrm{C}(14)-\mathrm{C}(16)$	$112 \cdot 9(6)$	$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	$111 \cdot 7(9)$
$\mathrm{O}(15)-\mathrm{C}(14)-\mathrm{C}(16)$	$122 \cdot 9(8)$	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	$118(1)$
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{C}(17)$	$118 \cdot 5(7)$	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$	$117(1)$
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{C}(21)$	$121 \cdot 4(7)$	$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$	$119(1)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	$120 \cdot 1(7)$	$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)$	$116(1)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120 \cdot 2(8)$	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)$	$118(1)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120 \cdot 7(8)$	$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{C}(61)$	$119(1)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$119 \cdot 6(7)$	$\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)$	$119(2)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(31)$	$124 \cdot 9(7)$	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)$	$119(2)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{O}(31)$	$115 \cdot 4(7)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$109 \cdot 3(7)$
		$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(2)$	$108 \cdot 1(7)$

two adjacent aliphatic chains are roughly perpendicular, as can be seen in figure 5. This probably corresponds to a close contact between both chains, as observed in similar structures [13, 22].

The angle between the axis of the central core and the direction of the alkyloxy chains is close to 130°. The core is $33 \cdot 1 \AA$ long. The central cyclohexyl ring φ_{0}, defined by atoms $C(1)$ to $C(3)$ and their analogues through the centre of symmetry, its adjacent cycle φ_{1}, defined by atoms $\mathrm{C}(7)$ to $\mathrm{C}(12)$, the following one φ_{2}, defined by atoms $\mathrm{C}(16)$ to $\mathrm{C}(21)$ and both the $(\mathrm{C}-\mathrm{COO})$ and $\mathrm{C}-\mathrm{COS})$ groups characterize the geometry of the polyaromatic central core.

The C-COO group makes an angle of 38° with the φ_{1} cycle; the latter makes an angle of 42° with the $\mathrm{C}-\operatorname{COS}$ group, which in turn, makes an angle of 22° with the φ_{2} cycle; the angle between the φ_{1} and φ_{2} groups is 21°.

The cohesion in the crystal is almost entirely due to van der Waals forces; this is in agreement with the rather low density: $1 \cdot 121$. There are few intramolecular contacts, particularly between contiguous alkyloxy chains. There are very few intermolecular

Figure 6. Projection of the structure along the b axis.

Figure 7. Ortep drawing of the molecule IB.
contacts between the parent molecule and its neighbours through the c glide plane and the 2_{1} axes, involving particularly the central polyaromatic cores.

Molecules give two dimensional sheets, parallel to the $y z$ plane, whose thickness is about $50 \AA$, the length of the a axis. Interactions between sheets, through the terminal methyl groups are very weak.

4.3. Discussion

The molecular arrangement, represented in figure 5 , is typical of a lamellar structure with segregation of the aliphatic chains and of the central polyaromatic cores. It is then possible to define molecular sheets as they exist in smectic phases.

Both aliphatic chains are roughly perpendicular to the sheet plane. The polyaromatic cores are also linear and parallell to each other and to the $x z$ plane; they make a tilt angle close to 70° with the director perpendicular to the sheets.

This kind of arrangement, although it concerns the solid state, is perfectly characteristic of a smectic C structure. Such mesophases have been observed in another family of biforked mesogens, for short lengths of the alkyloxy chains [7]; moreover it is noteworthy to compare the above parameters with these directly measured on the smectic C mesophase of a similar compound [3].

5. Conclusion

We have prepared two new series of biforked mesogens (tetracatenar and one phasmid (hexacatenar) with the -COS- linkage. The latter displays a hexagonal columnar phase like the benzoates, but the former have a different behaviour from the benzoates. They only exhibit N and smectic C phases. One crystal structure has been obtained with the compound IB $(n=12)$. It is monoclinic and the molecules adopt a zigzag form: the polyaromatic central moiety of the molecules is almost linear and the two alkyloxy chains are extended. The mean axis of these chains make an angle close to 130° with the polyaromatic central core. The important bulkiness of the aliphatic chains induces a large tilt angle of the polyaromatic central cores of the molecules; the same feature is also observed in the smectic C phase. It is interesting to analyse the role of the aliphatic bulkiness in the special case of the phasmidic compound. Columnar mesophases are often observed with phasmids, instead of smectic C phases with biforked mesogens. This behaviour is probably due to crowding in the aliphatic medium; in the case of the phasmids, the smectic C layers are destabilized, the interactions between the aromatic cores becoming too weak. As a consequence, the smectic layers are broken into ribbons, which can then arrange themselves according to a two dimensional lattice. It could be useful to analyse the evolution of the molecular area in the smectic C phases of compounds exhibiting both smectic and columnar mesophases; work is in progress in that direction.

6. Experimental

The infrared spectra were recorded using a Perkin-Elmer 783 spectrophotometer and the NMR spectra with a Bruker 270 MHz instrument.

General procedure for the preparation of 4-hydroxyphenyl-3,4-dialkoxythiobenzoates: a solution of 3,4-dialkoxybenzoyl chloride (25 mmol) (prepared from the corresponding acid and an excess of thionyl chloride) [12] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) was added dropwise over one hour to a cold solution (ice bath) of 4-hydroxythiophenol [24] (30 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(30 \mathrm{mmol})$. The reaction mixture was
stirred at room temperature overnight, the solvent was removed by rotary evaporation and the residual solid was transferred to a separatory funnel containing ethyl acetate $(300 \mathrm{ml})$ and water $(200 \mathrm{ml})$. The phases were separated and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a pad of silica gel and concentrated by rotary evaporation. The solid was recrystallized from methanol. Yield: 70-92 per cent.

$$
\begin{aligned}
\text { IR (Nujol, } \left.\mathrm{cm}^{-1}\right): & 3420,1655,1600,1220,1140 . \\
\text { NMR }\left(\mathrm{CDCl}_{3}, \mathrm{~d}\right): & 6 \cdot 9-7 \cdot 7(\mathrm{~m}, 6 \mathrm{H}), 6 \cdot 8-7 \cdot 45(2 \mathrm{~d}, 4 \mathrm{H}), 5 \cdot 65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), \\
& 4 \cdot 05\left(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{CH}_{2} \mathrm{O}\right), 1 \cdot 85(\mathrm{~m}, 4 \mathrm{H}), 1 \cdot 25-1 \cdot 55(\mathrm{~m}, 12-44 \mathrm{H}), \\
& 0 \cdot 9(\mathrm{~m}, 12 \mathrm{H}) .
\end{aligned}
$$

General procedure for the preparation of bis-3,4-dialkoxythiobenzoyloxyphenyl terephthalate: 4-hydroxyphenyl-3,4-dialkoxythiobenzoate (22 mmol), terephthalic acid $(0.21 \mathrm{~g}, 1 \mathrm{mmol})$, dicyclohexylcarbodiimide (DDC) $(0.21 \mathrm{~g}, 1 \mathrm{mmol})$, and $4-\mathrm{N}, \mathrm{N}-$ dimethylaminopyridine (DMAP) (20 mg) were mixed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The mixture was stirred at room temperature overnight. After filtration, the solvent was removed and the residue was chromatographed on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The desired derivative was recrystallized from a toluene-ethanol ($1: 1$) mixture. Yield $35-60$ per cent.

IR (Nujol, cm^{-1}): 2930, 1735, 1675, 1595, 1200, 840
$\operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{~d}\right): \quad 8 \cdot 4(\mathrm{~s}, 4 \mathrm{H}), 6 \cdot 9-7 \cdot 7(\mathrm{~m}, 6 \mathrm{H}), 7 \cdot 35-7 \cdot 6(2 \mathrm{~d}, 4 \mathrm{H}), 4.05$ $\left(\mathrm{m}, 8 \mathrm{H}, 4-\mathrm{CH}_{2} \mathrm{O}\right), 1 \cdot 85(\mathrm{~m}, 8 \mathrm{H}), 1 \cdot 25-1 \cdot 55(\mathrm{~m}, 24-88 \mathrm{H})$, 0.88 (m, 12 H)

References

[1] Malthête, J., Levelut, A. M., and Nguyen, H. T., 1985, J. Phys. Lett., Paris, 46, 875.
[2] Nguyen, H. T., Destrade, C., Levelut, A. M., and Malthête, J., 1986, J. Phys. Paris, 47, 553.
[3] Destrade, C., Nguyen, H. T., Roubineau, A., and Levelut, A. M., 1988, Molec. Crystals liq. Crystals, 159, 163.
[4] Guillon, D., Skoulios, A., and Malthête, J., 1987, Europhysics Lett., 3, 67.
[5] Levelut, A. M., Malthête, J., Destrade, C., and Nguyen, H. T., 1987, Liq. Crystals, 2, 877.
[6] Nguyen, H. T., Destrade, C., Gasparoux, H., Levelut, A. M., and Malthête, J., 1986, 11th International Liquid Crystals Conference, Berkeley.
[7] Fang, Y., Levelut, A. M., and Destrade, C., 1990, Liq. Crystals, 7, 265.
[8] Destrade, C., Nguyen, H. T., Alstermark, C., Lindsten, G., Nilsson, M., and Otterholm B., 1990, Molec. Crystals liq. Crystals, 180, 265.
[9] Alstermark, C., Eriksson, M., Nilsson, M., Destrade, C., and Nguyen, H. T., 1990, Liq. Crystals, 8, 75.
[10] Levelut, A. M., and Fang, Y., 1990, J. Phys., Paris, Colloque, 51, 229.
[11] Malthête, J., Nguyen, H. T., and Levelut, A. M., 1987, J. chem. Soc. Chem. Commun., p. 1584.
[12] Nguyen, H. T., Destrade, C., and Malthête, J., 1990, Liq. Crystals, 8, 797.
[13] Bideau, J. P., Bravic, G., Cotrait, M., Destrade, C., and Nguyen, H. T., 1990, Liq. Crystals, 10, 379.
[14] Gasparoux, H., Hardouin, F., Destrade, C., and Nguyen, H. T., 1992, New J. Chem., 16, 295.
[15] Malthête, J., Nguyen, H. T., and Destrade, C., 1993, Liq. Crystals, 13, 171.
[16] Abrahams, S. C., 1956, Quart. Rev. chem. Soc., 10, 407. McClellan, A. L., 1963, Tables of Experimental Dipole Moments (W. F. Freeman and Co.), p. 411.
[17] Neubert, M. E., Cline, R. E., Zawaski, M. J., Wildman, P. J., and Ekachal, A., 1981, Molec. Crystals liq. Crystals, 76, 43.
[18] Gilmore, C. J., 1984, J. appl. Crystallogr., 17, 42.
[19] Lehman, M. S., Koetzle, T. F., and Hamliton, W. C., 1972, J. Am. chem. Soc., 94, 2657.
[20] Cromer, D. T., and Waber, J. T., 1974, International Tables for X-ray Crystallography, Vol. IV, edited by V. A. Ibers, and W. C. Hamilton (Kinoch Press).
[21] Stewart, R. F., Davidson, E. R., and Simpson, W. T., 1965, J. chem. Phys., 42, 3175.
[22] Allouchi, H., Bideau, J. P., and Cotrait, M., 1992, Acta crystallogr., 48, 1037.
[23] Johnson, C. K., 1965, ORTEP. Report ORNL 3794, Oak Ridge National Laboratory, Tennessee, U.S.A.
[24] Twieg, R. J., Betterton, K., Nguyen, H. T., Tang, W., and Hinsberg, W., 1989, Mat. Res. Soc., 12, 47.

